DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations
نویسندگان
چکیده
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are no significant matches, the ligand cannot be docked in the protein. Otherwise, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. This provides the docked ligand in the target enzyme. Previously, CLASP was used to predict and validate (in vivo) the inhibition of phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus by two dipeptidyl peptidase-IV (DPP4) inhibitors - vildagliptin and K-579. In the current work, vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. The docked ligand is free from steric clashes and interacts with the same side chain residues that bind myo-inositol, providing corroboration of the validity of the proposed methodology.
منابع مشابه
DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations [version 3; referees: 2 approved]
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been show...
متن کاملMolecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin
Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...
متن کاملRESEARCH ARTICLES Ligand Solvation in Molecular Docking
Solvation plays an important role in ligand-protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure-based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly char...
متن کاملMultitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease
Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...
متن کاملMultitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine−Coumarin Hybrids for the Treatment of Alzheimer’s Disease
Alzheimer’s disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014